Unboundedness of potential dependent Riesz transforms for totally irregular measures
نویسندگان
چکیده
We prove that, for totally irregular measures ? on R d with ? 3 , the ( ? 1 ) -dimensional Riesz transform T A V f x = ? ? E y adapted to Schrödinger operator L div + fundamental solution is not bounded 2 . This generalises recent results obtained by Conde-Alonso, Mourgoglou and Tolsa free-space elliptic operators Hölder continuous coefficients since it allows presence of potentials in reverse class H achieve this obtaining new exponential decay estimates kernel as well regularity at local scales determined potential's critical radius function.
منابع مشابه
On the unboundedness of martingale transforms
© Springer-Verlag, Berlin Heidelberg New York, 1985, tous droits réservés. L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impressio...
متن کاملIndefinite higher Riesz transforms
Stein’s higher Riesz transforms are translation invariant operators on L2(Rn) built from multipliers whose restrictions to the unit sphere are eigenfunctions of the Laplace–Beltrami operators. In this article, generalizing Stein’s higher Riesz transforms, we construct a family of translation invariant operators by using discrete series representations for hyperboloids associated to the indefini...
متن کاملLarge Scale Renormalisation of Fourier Transforms of Self-similar Measures and Self-similarity of Riesz Measures
We shall show that the oscillations observed by Strichartz JRS92, Str90] in the Fourier transforms of self-similar measures have a large-scale renormali-sation given by a Riesz-measure. Vice versa the Riesz measure itself will be shown to be self-similar around every triadic point.
متن کاملPrincipal Values for Riesz Transforms and Rectifiability
Let E ⊂ R with H(E) < ∞, where H stands for the n-dimensional Hausdorff measure. In this paper we prove that E is n-rectifiable if and only if the limit
متن کاملHigher order Riesz transforms for Hermite expansions
In this paper, we consider the Riesz transform of higher order associated with the harmonic oscillator [Formula: see text], where Δ is the Laplacian on [Formula: see text]. Moreover, the boundedness of Riesz transforms of higher order associated with Hermite functions on the Hardy space is proved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2021
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2020.124570